Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator
نویسندگان
چکیده
This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F-V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.
منابع مشابه
Robust adaptive control of voltage saturated flexible joint robots with experimental evaluations
This paper is concerned with the problem of design and implementation a robust adaptive control strategy for flexible joint electrically driven robots (FJEDR), while considering to the constraints on the actuator voltage input. The control design procedure is based on function approximation technique, to avoid saturation besides being robust against both structured and unstructured uncertaintie...
متن کاملAn Investigation on the Effect of Using Regenerative Braking System on Energy Consumption Reduction of Hybrid Vehicles Based on Tehran City Driving Cycle
In driving and when you brake, a lot of energy is dissipated to stop the car; especially in urban areas where the vehicle is driving in a stop-and-go pattern. This energy, which is dissipated by the brake pads, can be stored in the vehiclechr('39')s battery. In Hybrid and Electric Vehicles, a regenerative brake can be used alongside the mechanical brakes to regenerate some energy while braking....
متن کاملApplication of Piezoelectric and Functionally Graded Materials in Designing Electrostatically Actuated Micro Switches
In this research, a functionally graded microbeam bonded with piezoelectric layers is analyzed under electric force. Static and dynamic instability due to the electric actuation is studied because of its importance in micro electro mechanical systems, especially in micro switches. In order to prevent pull-in instability, two piezoelectric layers are used as sensor and actuator. A current amplif...
متن کاملPull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage
The present research attempts to explain dynamic pull-in instability of functionally graded micro-cantilevers actuated by step DC voltage while the fringing-field effect is taken into account in the vibrational equation of motion. By employing modern asymptotic approach namely Homotopy Perturbation Method with an auxiliary term, high-order frequency-amplitude relation is obtained, then the infl...
متن کاملVersatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators.
A highly versatile soft gripper that can handle an unprecedented range of object types is developed based on a new design of dielectric elastomer actuators employing an interdigitated electrode geometry, simultaneously maximizing both electroadhesion and electrostatic actuation while incorporating self-sensing. The multifunctionality of the actuator leads to a highly integrated, lightweight, fa...
متن کامل